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Abstract 

This paper shows that any generalized network probleiu can be 

transformed into a generalized transportation problem. Our approach 

extends earlier procedures for transforming pure network problems to 

ordinary transportation problems. AJ so we show that start and solution 

algorithms developed for certain classes of generalized network problems 

can be applied to any generalized network problem. 



^^ 

1.     Intrüduction 

The purpose of this paper is to show that any generalized network problem 

can be translonned into a generalized transportation problem.    Our approach 

constitutes an extension of the procedures  [  6,7  ]   for transforming ordinary 

("pure")  network problems into pure transportation problems.     Since it has 

been shown [     k    ]  that any generalized network whose incidence matrix does 

not have full  row rank is equivalent to a pure network problem,  our results 

imply that  such generalized networks are equivalent to ordinary transportation 

problems. 

Our proposed transformation makes it possible to extend the range of 

application of those procedures  [  ^,3 ] which have been developed lor general- 

ized network problems whose arc multipliers  (arc amplication coefficients) 

are between 0 and 1 permitting them to be applied to any generalized network. 

(Note that it  is not possible to develop a linear procedure for scaling an arbi- 

trary generalized network    problem   to yield all arc multipliers in such a 

range.)    This extension follows from the fact that any generalized transport at ion 

problem can be made to assume the desired form by simply seeding each column of the 

coefficient matrix to contain a 1 in its origin row and then dividing each desti- 

nation row by the largest coefficient in the row.     One computational aspect of 

these observations is that the procedure in  [  3  ]  can be used to yield a dual 

feasible solution for any generalized network problem . 

k.    Transformation 

For our purposes,  a generalized network will be defined to consist of n 

nodes or junction points that are connected pairwise by a collection of m directed 

arcs  (links).     It is not necessary for all pairs of nodes to be Joined. 



For each arc (i,j) in the network, we also define the following items: 

1. x. . is the flow from node i to node j. 

2. c. . is the cost of sending a single unit of flow from node i to 

node J. 

3. p. . is the amplication (or attenuation) coefficient (or multiplier) 

on the flow from node i to node j; i.e., if y units of flow leave 

node 1 then p. .y units enter node j. 

Letting N denote the set of arcs, a generalized network problem may be stated as; 

Problem I 

Minimize   r    c x, _. (l«l) 
(i,j)eN iJ 10 

subject to; 

- E  x  + i        P^x  = d , i = 1,2,...,n    (1.2) 
(i,j)€N ^   (j,i)€WJ1J1    1 

XiJ > 0, (i,j)€N , P.j > 0 (1.3) 

where d. is the amount of supply (demand) at node i, where the supply (demand) 

at node i is denoted by a negative (positive) d.. 

Each node in a network can be classified as a source, sink, or transshipment 

node. A source node only has arcs emanating from it, while a sink node only has 

arcs entering it. A transshipment node has arcs both entering it and ememating 

from it.  (Note:  a transshipment node may have a supply or a demand.) In this 

formulation, we assume lor simplicity  that there are n sources, n trans- 
s        t 

shipment nodes, n sinks and that these nodes are numbered in order from 1 to n. 

That is, the sources are numbered frcm 1 to n , the transshipment nodes from 

n + 1 to n + n and the sinks from n + n^ + 1 to n + n^. + n,. 
s       st st       std 



Our main  result is that the following generalized transportation is 

equivalent to Problem I: 

Problem II 
nt minimize ^c'-.x'..  +    LJ    C'.,       .y. .       . 

/.    ..     via    ij .   ,      i+n ,1 i+n ,1 (i,j+n JeN      0 1=1 s s 
s 

£abject to: 

(i,J+n JeN    1J 
IJ   X; i' ''s 

IJ   x'    +y,   . 
/■ •   ■       \  »T      iJ     i,i-n 

Z/   p'. .x', . + y. .    , 
(i,j+n )€N      1J    1J        J+VJ=bj'  J  = 1---'nt 

5 

2^   p'. .x'. . 
(i,j+n JeN      1J    1J 

x' , . > 0 
ij - 

y.^     • > o 
J+ns^J - 

= b. 

>   (i.J+ns)eN 

(2.1) 

(2.2) 

= ai,   i  = ns + l,.,.,ng   + nt (2.3) 

(2.4) 

,  J  = nt + l,...,nt + nd        (2.5) 

(2.6) 

,  j  = l,...,n. (2.7) 

where Q.\ . = c.    .,     » P1.,., "P.,   ., for  (i.j+n  )eN 
ij        i'J^g        1J      ^'J^ß s 

c' .   = 0 for i = 1,2,...,n, 
i+n ,i '   '      '  t 

s 

a.   = -d.     for i  = 1,....n 
ii ''s 

a.   = -d.   + B for i = n    + l,...,n    + n^ 
ii s        '       '   s t 

b    = B    for j  = l,...,nt 

b.  = d.,       for j   = n.   + l,...,n,   + n,, 
J        j+n " t        '      '  t        d 

and B is a buffer to be  specified later. 

A succint way of describing the transformation procedure for obtaining 

Problem II from Problem I is the following: 



1. Designate an origin for each source i of the network and let the supply 

value a. of this origin i be the negative of the amount of supply d. at 

source i.     ("Supplies" are positive in transportation formulations.) 

ct.    Designate a destination j  - n    for each  sink j  of the network and let 

the demand value b. of  this destination be the amount of demand 
J-n, 

d.. at sink j. 

3. For each transshipment node k designate an origin k and destination 

k - n . Let a. = -d, +15 and b,   = B.  (B is a buffer stock that 
s      K    K.        k-n       ^ 

s 
must be large enough to insure that all y     will be basic. A 

K • K—n 
'       s 

procedure for determining the appropriate  value of B when all 

p.. >1 or 0<p.. < 1 or p.. >0 is examined in a later section.) 
1.] —        ij —     ij 

k.    For each arc (i,j+n ) of the generalized network introduce an arc (i;j) 

in the transportation problem with a cost c*. . and multiplies p'. . equal 

to the cost and multiplier associated with the original arc. In addition, 

for each transshipment node k, introduce em arc (k,k-n ) in the trans- 

portation problem with a cost c'     equal to zero and a multiplier 
'  s 

k,k-n 
equal to one. Let y 

k,k-n 
denote the flow on this arc. 

3^ Equivalence 

Theorem: Assume that 0 < p. . < 1, (i,j)GN and let B • - j d.    . The solution 

{i:d. < 0) 

x. ., (i,j)fN is feasible (optimal) for Problem I if and only if the solution 

x' . .   ■ x. ..(i./OeN and y..   =a. -   Ex'..  ,i = n +1,.. .,n +nJ. is 
i,J-ns   ij ^i,!-^   i  (i/J+n j^      s '  ' s t 

S 

feasible (optimal) for Problem II.  (Furthermore, the theorem is valid if the 

oojective is to maximize the functionals (1.1) and (2.1).) 

Proof: 

It is apparent that the functionals for Problems I and II will have the 



same value for the solution a~ indicated. Thus, to prove the theorem, it 

suffices simply t o prove the easibility assertion. 

First assume that t e 

We will show tha~ · i, j -n s 

solution x .. , (i,j)EN is feasible for Problem I. 
l.J 

= X •. , (i, j ) EN and yi . = a. -
l.J ,J.-ns l. 

I ,xI. •I 

(i,j+n )EN l.J 
s 

i =n +1, ••• ,n +n is fE:asible for Problem II. By assumption x 1
• • , (i, j )EN 

s s J. 1 J-ns 

satisfies (2. 6) and clehrly by definition y. i and X 1
• • satisfy (2.3). 

J., -ns J.,J-ns 

Note that fori= l, ••• ,n, (1.2) is equal to- l.J x . . ·· d .• 
l. 

Since x 1
• • = 
J.,J-ns s (i, j)EN l.J 

x . . and ;,c • . is a feasible soll!tion for Problem I, then 2...J x 1 
• • 

1 l.J (i,j)EN J.,J-ns 
= -d 

i 

l.Jx' . . 
(i,j+n )EN l.J 

s 

=a., i=l, ••• ,n ; l. s thus (2.2) is satisfied. Stmilarly, for 

i = n +nt+l, ••• ,n (1.2) is equal to .B p .. x .. = 
s - ( j ,i) EN J l. Jl. 

d .• 
l. 

and the feasibility of x. . for Problem I we ha-ve LJ p . . x 1 
• • 

l. J (j,i)EN J l. J,l.-ns 

= di f or i = ns + nt + l, ••• ,n. Setting k = 

= d. or 
l. 

i-n s 
and 

or 

rewriting we obtain "B p' x' = b { =~ ) • Thus x'. . satisfies (2. 5) . 
( j ,k+n )EN jk jk k +ns ~J 

s 

The equality y . i = a. -
J., -ns l. 

lJx'
1 

.1 i-n +l, ••• ,n + nt can be 
(i,j+n )EN J s s 

s 

rewritten as y . . = -d. + B - L x .. , and thus we have fran (1.2) 
J.,J.-n 1 (• ")Nl.J s l.,J € 

y .. 
J.,J.-n s 

+ d. - B + l. r; p . . x . . = d. ; i • n + 1, ••• ,n + nt or 
( j ,i)EN l. Jl. l. s s 

~p .. x . . + y .. 
( . . ) N J l. l. J., J.-n J 1 l. E S 

= B, i = n + l, ••• ,n + nt. Setting k =i-n yields 
s s s 

i.Jp. k x . k + :/k+n k = B, k = l, ••• ,nt. Since 
( · k+ ) N J, +n J , +n s' J , n

8 
E s s 

P'i. = Pi,j+ns'x'ij = x., "+ns and bj = B for j=l, ••• ,nt the solution x'ij 

satisfies (2.4). 

Beca se all of the 0 < pij ~ 1, the flow out of any transshipment node i 

5 



cannot be greater than the total supply (B) less ,max( d. ,0) 
1 

Thus y. . = 
1,1-ns 

- d . + B - r x . . is nonnegative for i = ns + l, ••• ,ns + nt . Therefore (2. 7) 
1 (i,j) eN 1 J 

i satisf ied and this completes the firs~ half of the proof. 

ext, assume x' . . is feasible f or Pr0blem II. We must now show that this 
1J 

solu ion is fe asible for Pro lem I. It is immediate~y apparent that (1 . 3) is 

sa isfied f rom (2. ); fori= l, ••• ,n (1.2) is satisfied from (2.2); and for 
s 

i = ~ s + t + l, ••• ,n {1.2) is satis ied from (2. 5). 

Fork = n +l, ••. ,n +n , i f equation k o ( - . 3) is subtracted from 
s s ~ 

equatio~ k-n of (2. ) we o tain 
s 

- r x' . - y + 
(k, ' +n ) e k k,k- ns 

r 
(i, k)E 

p ' x' 
i , k- n i, k-n s s 

Since = B and a = - d_ + B we have 
k- n .1< l< 

s 

-~· 

x, . + 
K 

l 

(i , k) 
Thus (1.2) is satisfied 

(k, j) 

for all n es 1, 2 , ... , ., a d the proof is complete . 

Cor ollary : Assume that p . . ~ 1, (i, ·)e 
1 

and let B = d. 
{i : d. > 0} , 

1 

The solution 

x . . is J. easi le (optimal) 
1 -

x. , , ( · · ) r and y . 
i , 1- n 

s 

( optimal) or Pr o lem II . 

or Problem I if and only if t he solution x'. . = 
1, - n 

= a. -
1 

... s 

x' .. ,i = n + l, ••• ,n +ntis easible 
. ) 1J s s ( i, · +n E 

s 
( urthermore, t he corollary is valid i f the objective 

is o maxi.ndze t e unctionals (l.l) an (2.1)) . 

Fr m 

_ r~-.1 lem II 

val e o 

.e pro ft o the tneorem, i 

x .. i ~ a a s j le sol ion 

x' .. is a f easible sol ti.on 
1 

or 

r Pro lem I regardless o the 

ad p .. • Similarly , t .e proo u he t heorem establishes that 

il X . . s a fe asi le sol 0 to Problem I, ten x'i j i.s a easible col tion 



to Problem II if and only if y. .   > 0. Thus it suffices simply to show that 
i « i." r i 

E 

s 
To do this, note that p.. > 1 for all (i,j) implies that the flow out of 

any transshipment node i cannot be greater than the total demand(B)less max(0,d.). 

Otherwise, the amplification of the Jlow leaving the node would render the solution 

infeasible since this amplified flow co ild not be absorbed by the demand. Thus 

y..   =-d.+B-      x..is nonnegative f'oi B equal to the total demand and 
^""s    i      (i,j)€N ^ 

this c^rapletep the rironf. 

If some of the multipliers p.. are ]ess than one and others are greater than one, 

then the problem may contain "creator" and/or "destructor' loops (See Jewell [ 5 I») 

In such a case the solution region may be unbounded since arbitrarily large amounts 

of flow may be created and later destroyed. Thus, it is not possible to derive a 

sulliciently large value for the buffer B without assuming the nonexistence of creator 

cr destructor loops. From a computational standpoint, however, it is not necessary 

to Know a sufficiently large buffer size a-priori since the buffer can be successively 

increased until either an optimal solution is found to tne generalized network or the 

problem is determined to oe infeasible or unbounded. Morewer, this manipulation of 

the bu. fer can be done without interrupting the ordinary calculations and without 

shifting from a primal method to a dual method. This may be seen as followj». 

Set the buffer at some positive vttiue (i.e., B > 0) and try   to solve the 

problem using a special purpose primal approach. First pic^ an artificial primal 

feasible starting basis containing the y    . variables. This can be done by 
s' 

considering the transportation tableau format for Problem II with a column of 

artificial variables z. adjoined: 
J 



transshipment 
nodes 

sink nodes Artificials 

source 
nodes 

I 

■transshipment 
nodes 

1 
1 h 

z n s 

yn.+i,: z      ., 

• • • • 
"s11 

yn   +n   .1 z n   +n s    z- z nsTi*t 

ai=-d1 

a =-d 
n   n 
s   s 

a   =-d   +B 
n +1  n +1 s.    s 

a   =-d _._ +B 
ns+nt n

S
+nt 

b 
nt+1 nt+nd 

Set y ^. .-h,z    ^.= d ,. Li=l,...,n,, and subtract the artificial variable 
''n +1,1   n +i ' n +11      ' t7 s '     s     s 

z ,. from origin constraint n +i if d ,. < 0; otherwise add z  ..In addition 
n +i s     n +i n +i s s s 

if n > n,, set s — d x'.   ,.■ (l/p'.   .j) b ,., 1=1,...^, and set z. = la.-(l/p*.   )b + il i^n.+i v '*  i^n.+i' n+i    '  ' d        i ' i v /r i^n.+i n  '• 

1=1,...^, and subtract z. if a.-(l/p'.   ,.)b  , . < 0: otherwise add z   Also d i   i w.r i,n1.+i
/ n,+i i 

set z.=a., ianJ+l,...,n and add it.  (Note if x'.   ..i=l,...,nJ, does not exist 
i i'   d '  ' s v        i,n +i'  '  ' d 

then it is also an artificial variable and let p'.   ,■!•) 
i,nt+a 

If nE < nd, set x'.^ ^.4/p1^ ^b^.^i^^ .. .,ns and *'^^ m 

(l/p A.) b  ., i«n +l,.,.,n.. Further set z. ■ a. - (l/p .  ^J b  .i, x ' n ,n.+i  n.+i    s     ' d i  ' i  v 'r i.n.+i' n^+i1 
s t     t „ ' t     t 

^ th 
1=1,.°,....n -1 and z  = la  - r (l/p1,   ..) b  ,1. Add z. to the i— origin if 

s      ns    nS  i=n    i'V1  V1 

s 
a. ^l/p1.   )h      . > 0, i ■ 1,8,...,n -1; otherwise subtract z.. Similarly add i     i^n.+l n,+i ~ s 1 

or subtract z 
n s 

This is a basic artificial feasible solution since the set of the first 

u +c;n +n unit vectors is a subset of the span of the vectors associated with the s  t d 
basic variaoles. This can be easily seen by observing that the vector associated with 

the variable z. consist of the first n +n, unit vectors and subtracting these unit 

vectors from the other vectors associated with the otherbasic vectors yield the 

remaining unit vectors. 

Using this artificial primal basic feasible solution consider performing a 

8 



Phase I optimization (i.e., minimizing the sum of the artificials). Throughout this 

minimization the balfer can be manipulated in a manner which enables the y., 
i +n , i 

E 

variables to be kept basic.  To see this first note that increasing the buffer B 

will increase only the basic y.   . variaoles.  Consequently, during Phase I when- 
s 

ever a variable x1. . would enter the basis in place ol some variable \       . ., it is 

possible to increase the buffer sufficiently to prevent such a replacement from 

occurring.  This is a consequence of the fact +.het the basis representation of any 

candidate to enter the basis must have a positive coefficient associated with at 

least one artificial variable. Thus, at the termination of Phase I all of the 

y  . . variables will be basic.  If any artificial variable is basic at a positive 
n„+i,i 

value then the generalized network problem is of course infeasible since increasing 

the buffer will only increase the y  . . variables and thus not affect the artificial 
''n +1,1 

s 
variables. (Specifically, there exist no buffer values for which the generalized 

transportation problem is feasible, consequently, the generalized network problem 

is infeasible.) 

After completing Phase I and pivoting all zero-valued artificials out of the 

basis, it is either possible in Phase II to continue to keep the y  . . variables basic 
''n +i»i 

s 
by the same procedure of manipulating the buffer, or, the generalized 

network must be unbounded due to the fact that the incoming variable can be brought 

into the basis at an infinite amount by infinitely increasing the buffer. If the problem 

is not unbounded Phase II will terminate with a finite optimal solution to the generalized 

network- sinceany increase in the buffer will not alter the solution value of the x' . 

to the corresponding transportation problem.  (This illustrates that the constraints 

accociated with the buffer act as "regular!zation constraints" as defined by 

Chames [ 1 ].) 
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